
The	Code	Behind	The	
Vulnerability	(v3)
Barry	Dorrans
.NET	Security	Czar
https://idunno.org

Who	am	I
.NET	Security	“Czar”
Which	means	I	annoy	everyone	about	coding	securely
And	I	get	to	deal	with	it	when	I	miss	things
I	also	ramble	and	swear	on	twitter	in	a	non-work	
approved	manner	
@blowdart

What	you	can	expect
7	MSRC	bulletins	and	what	lay	behind	them

And	a	few	things	we	caught	before	they	caused	a	bulletin.

Unicode	and	how	to	abuse	it
Misusing	encryption
Zip	files	and	runaway	processes
Naïve	cert	comparisons
XSS	via	URL	validation

7	Tales	of	MSRC	Cases

The	Microsoft	Bulletin	Process.
§Vulnerability	reported
§MSRC	open	case
§Product	Group	Security	
emailed

§Reproduction	attempted
§Reproduction	tested	
against	all	supported	
OS/software	
configurations

§Fix	developed
§Fix	tested
§Bulletin	written
§Fix	deployed	internally
§Bulletin	and	fix	
released

Security	Bulletins
Hash	DoS (MS11-100	/	CVE-2011-3141)
Padding	Oracle	(MS10-070	/	CVE-2010-3332)
SharePoint	ViewState RCE	(MS13-067	/	CVE-2013-1330)
Infinite	Regex	DoS (MS15-101	/	CVE-2015-2526)
XSS	in	ASP.NET	Core	with	Raw	HTML	(CVE-2018-0784)
Griefing via	CSRF	(CVE-2018-0785)
Malware	via	WSDL	(CVE-2017-8759)

Hash	DoS (CVE-2011-3141)
A	Denial	of	Service	caused	by	parsing	FORM	inputs.
Caused	by	HashTable and	Dictionary	using	a	predictable	
hash	algorithm	for	string	keys.
Fixed	by	switching	hash	functions	to	one	that	is	
unpredictable	or	limiting	dictionary	size	.

Hash	DoS explained
All	form	fields	beginning	with	A	would	go	into	slot	A.

To	get	a	value	back	you	go	to	the	slot	and	look	through	
everything.
The	more	A	fields	there	are	the	longer	it	takes.

If	you	can	force	everything	into	a	single	slot	then	lookups	will	
take	more	and	more	CPU	which	leads	to	DoS.
Originally	presented	at	28c8	(28th	Chaos	Communication	Congress)	2011.	Alexander	
“alech”	Klink	and	Julian	“zeri”	Wälde exploited	PHP,	Java,	Python,	JavaScript.

DIY	Hash	DoS
Dictionary<TKey>	fix	only	applies	to	string	keys.
If	you	allow	user	input	into	a	hash	based	collection	
which	has	a	key	which	isn’t	string	and	your	
GetHashCode()	algorithm	for	the	key	class	is	predictable	
then	you	are	vulnerable…

Hash	DOS	Demo

How	can	I	fix	this?
Don’t	use	user	input	as	keys	in	dictionaries	unless
The	user	input	is	a	string	OR
The	HashCode for	the	input	is	strong	and	you	implement	
a	session	key;
eg.	SHA1HMAC	with	a	random	key	set	at	runtime.

Padding	Oracle	(CVE-2010-3332)
Information	disclosure	via	cryptographic	attack.
An	endpoint	was	exposed	which	validated	if	a	string	was	encrypted	
correctly.
The	attacker	could	use	the	yes	or	no	result	to	build	properly	
encrypted	strings	without	knowing	the	key.
This	then	allowed	forged	requests	to	scriptresource.axd and	serve	
up	any	file	in	the	web	application,	like	web.config,	which	contains	
machine	keys,	which	you	can	forge	auth tickets	with.
Fixed	by	having	scriptresource.axd validate	signatures	and	serve	JS	
only.

Padding	Oracle	Explained
Encrypted	data	is	often	padded	to	meet	algorithm	
requirements.
Side	channel	attack	can	be	used	to	discover	the	padding	is	
correct.
This	can	then	lead	to	fast	decryption	– you	tweak	a	single	
byte	and	ask	“Is	this	padding	correct?”.	From	there	you	can	
calculate	the	original	character.
Originally	presented	at	EUROCRYPT	2002,	Serge	Vaudenay against	CBC	mode	in	SSL,	IPSEC

Expanded	to	ASP.NET	by	Thai	Duong,	Juliano	Rizzo	at	IEEE	Symposium	on	Security	and	Privacy	2011.

How	can	I	fix	this?
Don’t	expose	padding	oracles.
Add	a	authenticated	signature	to	the	encrypted	data,	
and	validate	it.

SharePoint	ViewState RCE	(CVE-2013-1330)
Remote	code	execution	via	Serialization.
Made	possible	by	SharePoint	disabling	ViewState MAC.
Fixed	by	turning	ViewState MAC	on.
Discovered	by	Alexandre	Herzog,	presented	at	Area41	in	2013.
Expanded	by	Alexandre	to	demonstrate	RCE	if	machine	key	is	known.
Expands	on	a	remoting exploit	discovered	by	James	Forshaw	and	presented	at	BlackHat
2012.	

RCE	via	ViewState
ViewState is,	by	default,	signed.
If	it	is	not	signed,	or	the	signing	key	is	known	you	can	
forge	ViewState to	contain	arbitrary	objects.
ViewState is	implicitly	trusted	and	objects	embedded	in	
it	get	created	when	it’s	parsed.

Deleting	files	with	ViewState
.NET	contains	a	TempFileCollection class	which	is	
serializable.	
Serializable	classes	can	be	stored	in	ViewState
The	class	cleans	up	files	when	the	class	is	GCed.	
You	could	set	the	file	names	in	the	collection	from	a	
serialized	representation…

Viewstate /	
Serialization	Demo

How	can	I	fix	this?
When	you	roundtrip	state	to	a	user	controlled	space	sign	
the	data.
Don’t	publish	your	signing	key.

Infinite	Regex	(CVE-2015-2526)
DoS against	validators	with	crafted	input.
Made	possible	due	to	a	backtracking	Regex	and	.NET	not	
putting	a	timeout	on	regular	expressions	by	default.
Fixed	by	adding	timeouts.
Discovered	by	Roberto	Suggi,	reported	in	April	2015.

Infinite	Regex	
Demo

How	can	I	fix	this?
Find	a	better	way	to	validate	than	regular	expressions.
Set	timeouts	on	all	regular	expressions.
Set	a	global	regex	timeout.
AppDomain.CurrentDomain.SetData(

"REGEX_DEFAULT_MATCH_TIMEOUT",

TimeSpan.FromSeconds(1));

XSS	in	ASP.NET	Core	(CVE-2018-0784)
MVC	encodes	every	piece	of	output	by	default.
Except	when	you	tell	it	not	to.
And	we	told	it	not	to.
Which	would	have	been	ok	…	but	…
Discovered	by	Kévin	Chalet,	reported	in	2017.

XSS	via	Overbinding
Demo

How	can	I	fix	this?
Don’t	use	Html.Raw.	Search	your	code	for	it.
For	things	should	never	come	from	user	input	apply	
[BindNever].
If	something	is	generated	server	side,	always	generate	
server	side,	stop	putting	it	in	a	hidden	field	to	transport	
it	between	requests.

CSRF	in	ASP.NET	Core	(CVE-2018-0785)
CSRF	allows	another	site	to	act	on	behalf	of	a	logged	in	
user.
ASP.NET	Core	MVC	automatically	adds	tokens	to	all	
HTML	forms	to	prevent	this.
Which	doesn’t	help	when	it’s	not	a	form.
Discovered	by	Kévin	Chalet,	reported	in	2017.

How	can	I	fix	this?
GET	should	be	idempotent.	
(Resubmitting	a	GET	shouldn’t	change	the	results)
When	you	change	state	use	a	POST.

WSDL	abuse	(CVE-2017-8759)
Nation	state	attack.
WSDL	is	metadata	for	SOAP	endpoints.	Used	to	generate	
proxy	objects.
Did	you	know	.NET	Framework	has	a	WSDL	parser	which	
generates	code?
Discovered	by	FireEye,	reported	in	2017.

WSDL	abuse	(CVE-2017-8759)
IsValidUrl()	inside	the	parser	had	a	bug.
This	enabled	a	nation	state	targeting	Russian	speakers	in	
another	Eastern	Europe	country	to	compile	code	on	
their	machine.
It	was	activated	via	Word’s	SOAP	moniker	functionality	
that	starts	off	.NET	with	no	user	interaction,	parses	
WSDL	and	then	can	connect	to	a	SOAP	endpoint.

How	can	I	fix	this?
Don’t	be	a	country	Russia	wants	to	invade	(or	has	
partially	invaded).
Don’t	ever	write	code	that	generates	code	from	user	
input,	then	compiles	and	runs	it.

Mistakes	we’ve	seen

Bad	encoding
What’s	wrong	with?
string.Format(

"onmouseover=\"DisplayTooltip('Issue: {0}');\"" +
"onmouseout=\"DisplayTooltip('');\"",
HttpUtility.HtmlEncode(d["Title"]);

Encoding	is	context	specific	and	hard	to	get	right	once	
JavaScript	is	involved.
Better	to	set	the	value	in	a	DIV	HTML	Encoded	then	pull	
out	contents.
<div data-stuff="{@Title}" />

I	İ	Captain
What	will	the	following	print?
const string input = "interesting";
bool comparison = input.ToUpper() == "INTERESTING";
Console.WriteLine("These things are equal: " + comparison);

People	make	security	decisions	based	on	string	comparisons.
Use	string.Compare(a, b, StringComparison.OrdinalIgnoreCase)
There’s	a	code	analysis	rule	for	this	– CA1309

Turkish	I	Demo

It’s	not	just	Turkey
If	you	have	a	CultureInfo of	th_TH.UTF8
StartsWith(".") crashes	a	process	on	Mac	&	Linux	
because	Thai	has	no	punctuation	marks.
ISO/IEC	14651:	http://unicode.org/L2/L2006/06105-02n3847-14651-2001-fdam3.pdf (Annex	C	2.1)

“No	syllable	structure	or	word	boundary	analysis	is	required,	as	Thai	lexicons	are	ordered	alphabetically,	not	
phonetically.	Note	that	Thai	normally	does	not	use	any	word	separator,	except,	and	exceptionally,	zero	width	
space.“

Wide	<
Unicode	has	“full	width”	characters
<	becomes		＜
＜ is	﻿＜
Browsers	ignore	this,	so		＜ｓｃｒｉｐｔ＞ isn’t	XSS
However	if	put	＜ into	a	SQL	varchar field	it	gets	converted	to	<
And	now	you	have	persisted	XSS
So	don’t	use	a	non	Unicode	column	to	store	Unicode	characters.
(And	don’t	trust	data	coming	from	SQL	– HtmlEncode it!)

Common	cryptography	mistakes
“This	is	base64	encrypted.”
“I	have	this	great	new	algorithm.”
Key/IV	reuse	– when	a	document/resource	changes,	change	Key/IV.
Keys	have	purposes.	Don’t	reuse	keys	across	purposes.
Encrypted	data	must	have	message	authentication.
Hashed	combined	string	errors
builtin+securely == built+insecurely
Prefer	hash(len(a) + hash(a) + len(b) + hash (b))
Certificate	verification	by	host	name	alone.

Path	Transversal
File	upload	– RFC1867
The original local file name may be supplied as well, either as a 'filename'
parameter either of the 'content-disposition: form-data' header or in the
case of multiple files in a 'content-disposition:file' header of the
subpart.

Of	course	if	you	edit	the	request	before	it	leaves	the	browser	
…
Use	a	unique	name.	Generate	it	yourself.	
If	you	have	to	keep	it	use	something	like	
string filename =

System.IO.Path.GetFileName(userProvidedFileName);
string fullPath = Server.MapPath(

System.IO.Path.Combine(
@"d:\inetpub\inbound\",filename));

Zip	bombs
When	accepting	user	files	for	parsing	it’s	easy	to	evil.
Zip	bombs	– tiny	file	which	recursively	uncompresses.	
e.g.	42.zip	- zip	file	consisting	of	42	kilobytes	of	
compressed	data,	containing	five	layers	of	nested	zip	
files	in	sets	of	16,	each	bottom	layer	archive	containing	a	
4.3	gigabyte	file	for	a	total	of	4.5	petabytes	when	
uncompressed.

Billion	laughs
XML	has	the	same	problem.
Billion	Laughs	defines	10	entities,	each	of	which	is	defined	as	consisting	of	10	of	the	previous	
entities	etc.	the	document	being	a	single	instance	of	the	largest	entity,	which	contains	one	
billion	copes	of	the	first	entity.
<?xml version="1.0"?>
<!DOCTYPE lolz [
<!ENTITY lol "lol">
<!ELEMENT lolz (#PCDATA)>
<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

]>
<lolz>&lol9;</lolz>

Preventable	by	turning	off	DTD	Parsing

Things	we	do	for	you
and	a	couple	of	things	we	don’t.

Opt-in	to	protections
Back	compat means	you	need	to	opt-in	to	certain	
breaking	changes.
To	opt	in	to	ASP.NET	4.5	behaviors,	set	the	following	in	
web.config
<machineKey compatibilityMode="Framework45" />

Or	(which	is	what	the	ASP.NET	4.5	project	templates	do)
<httpRuntime targetFramework="4.5" />

String	hashcode randomisation
To	help	against	HashDOS we	can	randomize	hashcodes.
We	don’t	do	this	by	default	in	the	.NET	Framework	
because	people	save	hashcodes even	though	we	never	
promised	they’d	be	constant.

<configuration>
<runtime>
<UseRandomizedStringHashAlgorithm enabled=1 />
...

</runtime>
</configuration>

DataProtector
ASP.NET	4.5	introduces	MachineKey.Protect and	
Unprotect
This	replaces	Encode	and	Decode	which	allowed	a	
developer	to	choose	between	Sign,	Encrypt	or	Both.
It’s	now	always	both.
Aimed	at	ephemeral	data.
ASP.NET	Core	replaces	it	with	DataProtector

Stop	using	this
Partial	Trust	-
https://support.microsoft.com/kb/2698981
Request	Validation	
MachineKey.Encode &	MachineKey.Decode
http://www.asp.net/aspnet/overview/web-
development-best-practices/what-not-to-do-in-aspnet,-
and-what-to-do-instead#security

Breaking	partial	
trust	demo

The	scary	demo

In	summary
Sign	your	data,	even	when	it’s	encrypted
Don’t	use	regular	expressions
Don’t	use	BinaryFormatter
Don’t	overbind
Use	the	right	verb
Opt-in	to	new	protections

©	2015	Microsoft	Corporation.	All	rights	reserved.	Microsoft,	Windows,	and	other	product	names	are	or	may	be	registered	trademarks	and/or	trademarks	in	the	U.S.	and/or	other	countries.
The	information	herein	is	for	informational	purposes	only	and	represents	the	current	view	of	Microsoft	Corporation	as	of	the	date	of	this	presentation.		Because	Microsoft	must	respond	to	changing	market	conditions,	it	should	not	be	interpreted	to	be	a	commitment	on	the	part	of	Microsoft,	
and	Microsoft	cannot	guarantee	the	accuracy	of	any	information	provided	after	the	date	of	this	presentation.		MICROSOFT	MAKES NO WARRANTIES,	EXPRESS,	IMPLIED	OR	STATUTORY,	AS	TO	THE	INFORMATION	IN	THIS	PRESENTATION.

